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DUET: Improving Inertial-based Odometry
via Deep IMU Online Calibration
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Abstract—This paper presents a deep data-driven inertial
measurement unit (IMU) online calibration (DUET) method that
can compensate for the run-time errors of the accelerometer
and gyroscope to improve inertial-based odometry. We design
a differential error learning strategy based on the kinematic
motion model to train the sensor error compensation model.
This strategy allows our method to learn IMU sensor errors,
such as scale factors, axis-misalignment, and biases, solely from
displacement and orientation increments given by external track-
ing systems. Then during the odometry computation, the trained
model leverages the past inertial data to mitigate the sensor
errors and thus reduces the integration errors to reflect the
odometry state. The experiments conducted on two public visual-
inertial datasets show an average of 20% improvement in the
position estimation accuracy of visual-inertial odometry, which
is comparable to existing learning-based methods with lower
operational complexity.

Index Terms—Inertial sensors, calibration, localization, deep
learning.

I. INTRODUCTION

ODOMETRY is a process to track the position and orien-
tation of the tracking target relative to its starting pose

in a 3D space. It is a fundamental element for various applica-
tions in health care [1], [2] and virtual/augmented reality [3].
Recent odometry methods are mainly inertial-based, such as
visual-inertial odometry (VIO) [4] and inertial-only odome-
try (IO) [5]. The essential component of inertial-based odom-
etry is the microelectromechanical system (MEMS) inertial
measurement unit (IMU). It consists of an accelerometer and
a gyroscope that measure accelerations and angular velocities
to provide continuous and high-frequency tracking.

VIO uses a lightweight camera to capture visual data and
a low-cost and small-size MEMS IMU to measure inertial
data. By fusing the visual data and inertial data, it has
achieved centimeter-level accuracy in 6 degrees of freedom
(DoF) odometry [6]. However, in challenging scenes such as
extreme brightness and dynamic environments, its accuracy is
degraded to meter-level when visual odometry fails, and the
odometry relies solely on IMU measurement integration [7].
IO is seen as the most compact method because it utilizes only
a small MEMS IMU and has lower computational complexity
and higher robustness to surrounding changes. However, it
suffers from low accuracy due to the rapid accumulation of
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various IMU errors during the integration [5]. The MEMS
IMU errors include scale factors, axis-misalignment, zero-
biases, and noise [8]. During the integration process, these
errors explode exponentially with time. As a result, IO is
unreliable even for a few seconds.

IMU calibration is a method to diminish these problems.
It is a process to measure and compensate for gyroscope and
accelerometer errors before or during odometry computation
to mitigate the negative impact of IMU errors on inertial-based
odometry results. Traditional offline calibration methods, such
as the multi-position method, can identify the unknown error
parameters by optimization algorithms with external refer-
ence information [9]–[12]. However, they are not applicable
to handling high non-linear and time-varying errors. Online
calibration methods, such as sensor fusion and filtering-based
methods [13], can estimate and compensate for run-time IMU
errors by fusing multi-sensor and using additional information.
It is capable of handling poor offline calibration and time-
varying sensor errors, thus improving the odometry results at
run-time. However, the performance is highly dependent on the
fused sensors’ reliability. For example, in visually challenging
scenarios such as dark environment, VIO no longer applies to
error compensation [7].

Recent data-driven online calibration methods, such as
Denoising IMU Gyro (DIG) [14] and Temporal Convolutional
Network Denoising IMU Gyro (TCN-DIG) [15], use super-
vised learning to train a calibration model and then directly
output correction terms, that is, biases and noise, by inputting
the run-time inertial data. These learning-based standalone sys-
tems are capable of calibrating complex run-time sensor errors
from only IMU sequences and have demonstrated superior
performance over traditional filtering-based approaches [16].
In inertial-based odometry scenarios, it is feasible to learn
an IMU calibration model in the training process using the
dynamic positions and orientations captured by high-precision
tracking systems such as the laser tracker and the optical
tracker [17]–[20]. However, these methods require additional
sensors and assumption-based processed data such as derived
accelerations based on the constant-velocity assumption in
addition to the tracking system. This increases the operational
complexity and limits the scenarios in which these data-driven
methods can be applied. Currently, there is still a lack of a
simple yet universal data-driven calibration model and learning
strategy for robust inertial-based odometry.

The main challenge arises from the module that calibrates
the accelerometers. On the one hand, an accelerometer senses
not only its linear acceleration but also the local gravity. As a
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result, the presence of a standard gravity value leads to larger
noise densities in accelerometers compared to gyroscopes.
This increases the difficulty of predicting its correction term,
i.e., bias and noise [21]. On the other hand, tracking systems
such as laser and optical trackers only capture high-precision
positions and orientations. Training the gyroscope calibration
model from the ground truth orientations is feasible because
the orientation can be obtained by directly integrating the an-
gular velocity. However, training the accelerometer calibration
model based on ground truth positions is not straightforwardly
feasible unless ground truth velocities or accelerations are also
provided [19].

Most data-driven IMU calibration studies have focused
on learning the calibration model using extra sensors and
assumption-based processed data, in addition to high-precision
tracking systems. However, in this work, we propose to
learn sensor errors solely from high-precision orientations and
positions without additional sensors, which allows data-driven
calibration to be applied to a broader range of scenarios.
This obtained performance is attributed to a loss function
designed based on the kinematic motion model. Moreover,
we conducted the first comprehensive experiments on datasets
covering multiple scenarios using different metrics to delve
into the impact of data-driven calibration methods on IO and
VIO. Our main contributions are as follows:

• A deep data-driven IMU calibration method based on two
connected dilated convolution networks for calibrating
dynamic gyroscope and accelerometer data simultane-
ously. With this, we overcome the limitation of using
separate models to calibrate gyroscope and accelerometer
data, respectively.

• A loss function based on the kinematic motion model for
learning the errors using solely ground truth positions
and orientations. This simplifies the learning process and
improves the applicability of data-driven IMU calibration
methods.

• A first thorough analysis through extensive experiments
on sensor readings, velocity, orientation, and position
estimates to evaluate the impact of the data-driven IMU
calibration method on the 6-DoF inertial odometry and
visual-inertial odometry. The results reveal the effec-
tiveness of data-driven calibration on reducing the error
accumulation rate of IO and improving the robustness of
VIO.

The rest of the paper is organized as follows. In Section II,
we introduce the related work, which includes traditional
and state-of-the-art data-driven gyroscope and accelerometer
calibration methods. In Section III, we introduce our deep
IMU calibration method. Finally, Section IV provides the
experimental results, and the conclusions and future directions
are presented in Section V.

II. RELATED WORK

Deep learning has provided new possibilities for unimodal
position estimation from IMU. For instance, it is used to
extract latent features from IMU signals to estimate the ve-
locity [5], orientation [22], and displacement [23]–[26]. These

methods have seen great success in 6-DoF IO, owing to avoid-
ing the error accumulation caused by the integration process.
Additionally, using data-driven deep learning to calibrate run-
time gyroscopes and accelerometers has become popular [27].
This is because introducing deep learning decreases human
intervention, facilitates the realization of autonomous online
calibration systems, and is well coupled with inertial-based
odometry [8].

A. Data-driven Gyroscope Calibration

In [28], the first long short-term memory (LSTM)-recurrent
neural network (RNN)-based denoising method was proposed
to denoise IMU gyroscope signals. Compared to autoregres-
sive and moving average models, the standard deviation of
denoised signals decreased by up to 42.4% with deep learning.
In [16], learning-based OriNet was proposed to estimate the
3D orientation with a genetic bias calibration algorithm. The
orientation estimation in real scenarios was improved by 72%
compared to the complementary filter and 89% compared to
Madgwick filter. Consequently, there is a growing interest
in applying learning-based methods to improve inertial-based
odometry. Brossard et al. [14] proposed a convolutional neural
network (CNN) to predict the run-time gyroscope correction
term, i.e., zero bias and noise, and to find the optimal coef-
ficients of scale factor and axis-misalignment during training
from measured accelerometer and gyroscope readings. Then,
Huang et al. [15] used a temporal convolutional network
to further improve the performance of the gyroscope online
calibration. They showed that the orientation estimated from
the calibrated gyroscope data could be used to improve
the accuracy of the VIO position estimation. To solve the
low generalizability problem of data-driven denoising models,
Yao [29] proposed a few-shot domain adaptation gyroscope
calibration method that consists of an embedding module,
restructor module, and generator module.

B. Data-driven Accelerometer Calibration

Engelsman and Klein [21] implemented three learning al-
gorithms and one machine learning method, including uni-
directional bi-layer LSTM, bi-directional one-layer RNN, bi-
directional one-layer gated recurrent unit (GRU), and k-nearest
neighbor, to calibrate the accelerometer. The evaluation of
a simulated dataset and static accelerometer data showed
that data-driven accelerometer calibration achieves a 60%
noise reduction and 20% improvement in stationary course
alignment compared to traditional methods.

Our basic network structure is similar to the aforementioned
data-driven gyroscope or accelerometer calibration methods,
which are based on convolutional neural networks. However,
instead of calibrating only one component of an IMU, we
simultaneously calibrate the gyroscope and accelerometer.

C. Data-driven IMU Calibration

Chen et al. [17] used a convolutional neural network to
reduce errors from both the accelerometer and gyroscope in
a laboratory environment. As a reference, the ground truth
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acceleration and angular velocity data were generated from a
well-designed linear motion stage and a rotary motor. Zhang et
al. [18] trained an RNN to calibrate the run-time gyroscope
and accelerometer. Additional high-quality sensors and sensor
fusion algorithms provide ground truth orientations, velocities,
and positions to train the calibration model. Similarly, Stein-
brener et al. [19] proposed LSTM-based and Transformer-
based methods to output calibrated IMU measurements for
real-time 6-DoF pose estimation. The ground truth velocities
are computed from positions based on the assumption that
velocities are constant between two consecutive frames. Re-
cently, Buchanan et al. [20] proposed to train both LSTM
and Transformer from the optimized ground truth biases of
target IMU to learn and compensate for the bias. They showed
that fusing the data-driven bias compensation model with VIO
reduced the drift rate by an average of 15%.

Our objective is similar to these studies to build the cali-
bration model from high-precision dynamic motion data and
then mitigate the sensor errors at run-time. Nevertheless, these
methods are forced to rely on external sensors and complex
setups to learn the model. In contrast, our proposed general
learning strategy keeps us from relying on these.

III. DEEP IMU ONLINE CALIBRATION (DUET)
In this section, we first present an IMU sensor error model

and a kinematic motion model used in inertial-based odometry,
followed by our deep IMU calibration network structure and
the loss function.

A. Preliminaries
Sensor error model A MEMS IMU consists of an ac-

celerometer and a gyroscope that measures the acceleration
a and the angular velocity ω of the carrier. However, the
measurement contains not only the true a and ω, but also
other error terms.

Given a three-axis strapdown accelerometer and gyroscope,
a commonly used error model is established as follows [8]:

ũ = (S +N)u+ b+ n, (1)

where ũ ∈ R3 and u ∈ R3 denote the measurement output
of an IMU and the true acceleration or angular velocity,
respectively. S ∈ R3×3 is the scale factor that refers to
the ratio between the output quantity and the input quantity.
N ∈ R3×3 denotes the axis-misalignment error results from
the non-orthogonality between each axis. b ∈ R3 is the so-
called zero-bias. It is the output value of the accelerometer
or gyroscope when the measured physical quantity is equal
to zero. n ∈ R3 is commonly assumed to be the high-
frequency random sensor white noise that follows the zero-
mean Gaussian distribution. Their matrix elements are defined
as follows:

S =

sx 0 0
0 sy 0
0 0 sz

 , b =

bxby
bz

 ,

N =

 0 γxy γxz
γyx 0 γyz
γzx γzy 0

 , n =

nx

ny

nz

 .

(2)

Kinematic motion model Inertial and visual-inertial odom-
etry calculate the trajectory from the acceleration and angular
velocity obtained from an IMU using the kinematic motion
model. The core processing is to rotate the acceleration from
the IMU frame to a fixed global frame and then accumulate
it to compute the velocity and the moving distance.

Given the angular velocity ω obtained from a gyroscope,
the special orthogonal rotation matrix in 3D space R ∈ SO(3)
that maps from IMU frame to global frame at time step i can
be expressed as follows:

Ri = Ri−1 exp(ωi−1∆t), (3)

where exp(·) is the SO(3) exponential map and ∆t is the
time interval of two consecutive frames. The velocity v in
the global frame is then calculated by rotating the measured
acceleration a and removing the local gravity g,

vi = vi−1 + (Ri−1ai−1 + g)∆t, g =

 0
0
−g

 . (4)

Finally, the position in the fixed global frame is calculated as
follows:

pi = pi−1 + vi−1∆t+
1

2
(Ri−1ai−1 + g)∆t2. (5)

B. Problem Modeling

According to the sensor error model in (1), the value ui

of an IMU accelerometer or gyroscope at time step i can be
expressed as follows:

ui = (S +N)−1 (ũi − (bi + ni)) . (6)

To simplify the problem, we denote (S+N)−1 and (bi+ni)
in (6) by C ∈ R3×3 and εi ∈ R3, respectively. C contains
both the scale factor and axis-misalignment. εi is the correc-
tion term that contains zero bias and noise. They are expressed
as follows:

C =

 sx γxy γxz
γyx sy γyz
γzx γzy sz

−1

, εi =

bx + nx

by + ny

bz + nz

 . (7)

Then, we have
ui = C(ũi − εi). (8)

In this paper, we aim to improve the IMU data reliability by
learning, predicting, and compensating for C and εi using a
deep neural network.

C. Network Structure

Our network structure is based on the dilated convolutional
neural network [30]. A dilated CNN is a type of CNN
that uses dilated convolutions to exponentially expand the
receptive field with few memory consumption and efficient
computation. The dilated convolutions enable the network to
maintain the temporal property of the data and capture long-
range contextual information, making it suitable for time-series
data. This network is widely used for data-driven calibration
because it is lightweight and has no loss of accuracy compared
to recurrent neural networks [14], [15].
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(a) Flowchart of building the calibration model.
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(b) Network architecture.

Fig. 1. The flowchart of building the calibration model and the network architecture for calibrating run-time gyroscope and accelerometer measurements.
The first dilated convolutional network inputs N + 1 frames raw IMU measurements and outputs current frame calibrated angular velocity. Then the second
dilated convolutional network inputs N + 1 frames calibrated angular velocities and raw accelerations then outputs the current frame calibrated acceleration.
N = 340 is determined by the network architecture. When training the calibration model, the ground truth orientations and positions are used to compute
the loss with inferred values from calibrated angular velocities and accelerations.

As shown in Figure 1, we define the network as predicting
the correction term ε̂a,i and ε̂g,i for the accelerometer and
the gyroscope from uncalibrated IMU data. In particular, we
leverage the current frame and past N frames of uncalibrated
3-axis accelerations (ãi−N , · · · , ãi) and 3-axis angular ve-
locities (ω̃i−N , · · · , ω̃i) to predict the correction term ε̂g,i.
In addition, we optimize the multiplier Cg for the angular
velocity ωi during training. The neural network that predicts
ε̂g,i at time step i can be expressed as follows:

ε̂g,i = fg((ãi−N , ω̃i−N ), · · · , (ãi, ω̃i)), (9)

where fg(·) is the function defined by a dilated convolutional
neural network. Then, the calibrated angular velocity ω̂i is
computed by

ω̂i = Ĉg(ω̃i − ε̂g,i). (10)

After obtaining calibrated angular velocities, we pass these
values with uncalibrated accelerations into the second dilated
neural network to optimize the multiplier Ca during training
and predict the acceleration correction term ε̂a,i, which is
defined as follows:

ε̂a,i = fa((ãi−N , ω̂i−N ), · · · , (ãi, ω̂i)). (11)

Similarly, the calibrated acceleration âi is computed by

âi = Ĉa(ãi − ε̂a,i). (12)

The network architecture is presented in Figure 1b. Note
that the input of fa(·) consists of uncalibrated accelerations
and calibrated angular velocities, which are used to connect
fa(·) and fg(·). Furthermore, from (5), the accurate inferred
position depends on both angular velocity and acceleration.
Thus, it is reasonable to learn the acceleration error from
calibrated angular velocities, which also mitigates the impact
of gyroscope errors.

D. Loss Function

The most straightforward way to train the model is to
minimize the loss between the predicted and target ground
truth acceleration and angular velocity. However, given high-
precision positions and orientations, acquiring the dynamic

i − 2T i − T i
pi − pi−T

ΔRi−2T,i− 3T2
, ⋯, ΔRi− T2 ,i

∫
ω̂i−2T+1, ⋯, ω̂i

̂ai−2T+1, ⋯, ̂ai

⋯

Calibrated IMU

⋯

pi−T − pi−2T

Δpi−2T,i

Multi-task 
Loss

Ground truth

Fig. 2. Schematic diagram of the proposed loss function. The target is to
minimize: 1) the residuals between the ground truth displacement difference
and the calibrated displacement difference with the condition of T window
size for each displacement; 2) the difference between the accumulated
orientation from calibrated angular velocity and the ground truth orientation
over T

2
windows.

ground truth IMU data at a high IMU frequency (200 Hz
or more) is not feasible in practice. This is because the
derivative process of high-precision positions suffers from
a jitter problem [19] (see Section IV-D2 for more details).
Therefore, solely using ground truth positions and orientations
for learning is a preferred solution.

We first consider learning accelerometer errors from posi-
tions. From the position inference function (5), the displace-
ment between two consecutive frames, i.e., with the condition
that the window size equals to 1, can be expressed as:

pi − pi−1 = vi−1∆t+
1

2
(Ri−1ai−1 + g)∆t2 (13)

= vi−1∆t+
1

2
aW
i−1∆t2, (14)

where
aW
i−1 = Ri−1ai−1 + g (15)

is the linear acceleration in the fixed world frame at time step
i−1. However, the initial velocity vi−1 in (13) is not available
in practice, especially when the tracked object does not move
from stationary. Thus, to remove the effect of the uncertain
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vi−1, we consider a consecutive displacement between pi−2

and pi−1 as

pi−1 − pi−2 = vi−2∆t+
1

2
aW
i−2∆t2. (16)

Then, according to the velocity inference function (4), equa-
tion (13) can be further formulated as:

pi − pi−1 = (vi−2 + aW
i−2∆t)∆t+

1

2
aW
i−1∆t2

= vi−2∆t+ aW
i−2∆t2 +

1

2
aW
i−1∆t2. (17)

We define ∆pi−2,i as the difference of displacement pi−pi−1

and pi−1 − pi−2, that is,

∆pi−2,i = (pi − pi−1)− (pi−1 − pi−2)

=
1

2
aW
i−2∆t2 +

1

2
aW
i−1∆t2. (18)

Thus, the displacement difference can be expressed as a
function of the linear acceleration in the fixed world frame.
However, using (18) still suffers from high-frequency position
jitters. We thus expand the window size of each displacement
to T and calculate the cumulative difference over 2T win-
dows. This allows for attenuating position jitter effects in the
calculation by enlarging the displacement difference. Similar
to the calculation of ∆pi−2,i, we derive that ∆pi−2T,i can be
expressed as only related to the linear acceleration within the
corresponding period as:

∆pi−2T,i = (pi − pi−T )− (pi−T − pi−2T )

=

T∑
j=1

jaW
i−2T+j−1∆t2 +

T−1∑
j=1

(T − j)aW
i−T+j−1∆t2

+
1

2

T−1∑
j=0

(aW
i−T+j − aW

i−2T+j)∆t2, (19)

where T is the window size of each displacement. aW
i+j is the

linear acceleration in the fixed world frame at time step i+ j
and computed as:

aW
i+j = Ri+jai+j + g. (20)

Figure 2 represents the schematic diagram of the loss
function. We define the loss function based on (19) and (20)
as:

L1

(
(p,R), â

)
=

∑
i

ρ(∆pi−2T,i −∆p̂i−2T,i), (21)

where ∆pi−2T,i is computed from ground truth positions,
∆p̂i−2T,i is calculated from the computed acceleration
(âi−2T , · · · , âi) through (12), (19), and (20), and ρ(·) is the
Huber loss function [31].

In order to train the model for gyroscope calibration, we
minimize the accumulated orientation error within every T/2
windows as:

L2(R, ω̂) =
∑
i

ρ
(
logSO3

(
∆Ri,i+T

2
∆R̂

−1

i,i+T
2

))
(22)

∆Ri,i+T
2
= R−1

i Ri+T
2

(23)

∆R̂i,i+T
2
=

i+T
2 −1∏

j=i

expSO3(ω̂j∆t) (24)

where logSO3(·) is the SO(3) logarithm map. Note that the
output of the first layer network is also used as the input of the
second layer network. Thus, we set a larger error calculation
frequency of gyroscope than that of accelerometer, as every
T
2 windows against every 2T windows. This allows for a
faster convergence of the first layer network for calibrating
gyroscope and further aided in the training of the second layer
network used to calibrate the accelerometer.

Finally, we use the sum of L1 and L2 to jointly train the
network:

L = w1L1

(
(p,R), â

)
+ w2L2(R, ω̂). (25)

The computational complexity of L is O(n), however, in
practice, the computation time depends more on the window
size T because of the matrix multiplications when calculating
the accumulated orientation within each window. In our ex-
periments, we analyzed the impact of T on the training time,
see Section IV-F for details. Furthermore, for balancing the
two loss terms, we adopt multi-task training strategy [32] to
adapt the weights as

L =
1

2c1
L1

(
(p,R), â

)
+ ln(1 + c21)

+
1

2c2
L2(R, ω̂) + ln(1 + c22), (26)

where c1 and c2 are parameters optimized during training.
The objective of (26) is to train the calibration model by
minimizing the adaptive weighted sum of the accumulated
displacement error and orientation error.

IV. EXPERIMENTS

In this section, we present two experiments to evaluate
the proposed method. In the first experiment, we analyze the
direct output of our model, i.e., the predicted sensor error,
and compare it with the raw sensor errors. In the second
experiment, we evaluate the proposed method in terms of
orientation, velocity, and position estimation by comparing it
with existing methods. Additionally, we offer two discussions
on the generalization issue of the data-driven method and
the hyperparameter T . In the first discussion, we explore the
impact of bias changes on the model performance by analyzing
the correlation between biases and evaluation results. Then,
we performed further experimental validation to clarify these
findings. In the second discussion, we analyze the impact of
the T on the model performance and training time. Then, we
emphasize a few important points for setting a proper T .

A. Datasets

1) EuRoC: EuRoC [33] is one of the most used visual-
inertial datasets. The dataset contains various sequences col-
lected by a micro aerial vehicle (MAV). The angular veloc-
ity and specific force were measured using an uncalibrated
ADIS16448 IMU at 200 Hz. Ground truth positions were
recorded at 20 Hz using a Leica Nova MS50 laser tracker.
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For sequences collected in a Vicon room, the 6D pose of the
MAV was recorded by the Vicon motion capture system at a
rate of 100 Hz. All collected data were precisely time-space
aligned with the IMU measurements. Then, a classic maximum
likelihood state estimator incorporated all ground truth and
IMU measurements to estimate final ground truth orientations,
positions, velocities, and the biases of the gyroscope and
accelerometer.

This dataset provides estimated high-precision velocity and
IMU sensor biases. Therefore, it is well suited for experi-
menting with our method. It enables us to test sensor error
prediction and position estimates. The dataset was split into
training set and test set following the same splitting strategy
as in related works [14], [15], as shown in Table I. The ground
truth data was aligned to the IMU timestamps by interpolation.
Additionally, as [34] reported, the ground truth on the V1 01
sequence of EuRoC is not accurate in its orientation estimate.
Thus, this sequence was not involved in our experiments.

2) TUM-VI: TUM-VI [7] is a more recent visual-inertial
dataset. It was collected by a handheld device with a non-static
start. The IMU data was logged by the Bosch BMI160 IMU
at 200 Hz. The accurate 6D pose ground truth was collected
using a MoCap OptiTrack Flex13 at 120 Hz. All data were
accurately aligned with the IMU measurements.

TUM-VI differs from EuRoC in two points. First, this
dataset only provides ground truth positions and orientations
thus it is not applicable to methods that require the use of
accurate accelerations, angular velocities, and velocities. Sec-
ond, the BMI160 IMU was strictly calibrated using the global
optimization method. Accordingly, the calibrated parameters
of the IMU were provided and the IMU data was calibrated.
This allows us to simulate uncalibrated IMU data based on
the given parameters to increase the diversity of the dataset.

We synthesized the uncalibrated IMU data, i.e., auncali and
ωuncali, of TUM-VI based on the given parameters and the
formulas in [7] as follows:

auncali = Ma(acali + ba), (27)
ωuncali = Mω(ωcali + bω), (28)

where Ma and Mω contain scale factors and axis-
misalignment, ba and bω are zero biases, acali and ωcali are

TABLE I
TRAIN AND TEST SEQUENCES.

Dataset Train sequences [length] (No.) Test sequences [length]

EuRoC

MH 01 easy [182 s] (1) MH 02 easy [150 s]
MH 03 medium [150 s] (2) MH 04 difficult [99 s]
MH 05 difficult [111 s] (3) V1 03 difficult [105 s]
V1 02 medium [83.5 s] (4) V2 02 medium [115 s]

V2 01 easy [112 s]
V2 03 difficult [115 s]

TUM-VI room1 [140 s] (5) room2 [143 s]
room3 [140 s] (6) room4 [111 s]

(Uncali) room5 [141 s] (7) room6 [130 s]

TUM-VI room1 [140 s] (8) room2 [143 s]
room3 [140 s] (9) room4 [111 s]

(Cali) room5 [141 s] (10) room6 [130 s]

the calibrated IMU data provided by the TUM-VI. The dataset
containing the synthesized IMU data is referred to as TUM-
VI (Uncali) in our experiments. Correspondingly, the dataset
containing the calibrated IMU data is dubbed TUM-VI (Cali).
We took the six-room sequences of TUM-VI (Uncali) and
TUM-VI (Cali) as the ground truth 6D poses are available
over the whole trajectory. Similarly, the ground truth data was
aligned to the IMU timestamps by interpolation and the dataset
was split into a training set and test set, as shown in Table I.

B. Method Implementation

Our method was implemented based on PyTorch 1.13.
The training process used an Adam optimizer [35] with 0.01
initial learning rate and 0.1 weight decay, which was adjusted
using a cosine annealing schedule [36]. We empirically set
the window size in loss function T = 64 with the IMU
frequency of 200 Hz (see Section IV-F for details). Setting
T to a power of 2 allows a faster computation of the loss
function by concatenating the multiplications [14]. We trained
the model for 1500 epochs using an NVIDIA TITAN RTX
GPU, which took about 1 min with 8 min training data. In
the test, predicting the calibrated IMU data takes 0.24 µs per
IMU measurement. We ran our method ten times with the
same setting and then took the mean results.

C. Evaluation of Sensor Error Reduction

Our model aims to predict and compensate for the IMU
sensor error. Thus, we compared the raw sensor error εa, εg
with the compensated sensor error εa − ε̂a and εg − ε̂g to
evaluate whether our method correctly predicted and reduced
the errors. Note that we only compared the residuals between
the before and after calibration sensor data and ground truth
inertial data. This is because the output of the data-driven
calibration model does not explicitly distinguish between
various types of sensor errors and is not directly related to
the underlying IMU physical characteristics [27].

According to the sensor error model (8), we computed the
raw error at time step i as

εa,i = ãi − Ĉ
−1

a ai,

εg,i = ω̃i − Ĉ
−1

g ωi, (29)

where ãi, ω̃i are the raw acceleration and angular velocity,
respectively. Ĉ

−1

a and Ĉ
−1

g are the optimized scale factor and
axis-misalignment for aligning the IMU data. ai and ωi are
the ideal IMU data derived from the interpolated ground truth
velocity and orientation as

ai = RT
i

(
(vi+1 − vi)

∆t
− g

)
, (30)

ωi = logSO3(R
T
i Ri+1)/∆t. (31)

We computed the compensated sensor error εa−ε̂a and εg−ε̂g
by removing the predicted error from the raw error. Then the
remains were the sensor errors of our calibrated IMU data.
We conducted this experiment only on EuRoC dataset as the
high-precision velocities are available.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

TABLE II
IMU SENSOR ERRORS ON EUROC TEST SEQUENCES,

ACCELERATION (IMPROVEMENT) [×10−2m/s2 (%)]/ANGULAR VELOCITY (IMPROVEMENT) [×10−2rad/s (%)].

x-axis y-axis z-axis

No. εa/εg (εa − ε̂a)/(εg − ε̂g) εa/εg (εa − ε̂a)/(εg − ε̂g) εa/εg (εa − ε̂a)/(εg − ε̂g)

1 0.40/0.26 0.24 (41%)/0.025 (90%) 6.30/2.11 0.39 (94%)/0.033 (98%) 0.44/7.71 0.13 (70%)/0.074 (99%)
2 3.52/0.22 1.02 (71%)/0.084 (61%) 1.69/2.10 0.29 (83%)/0.247 (88%) 2.47/7.67 0.88 (64%)/0.233 (97%)
3 1.26/0.38 0.64 (49%)/0.073 (81%) 9.30/2.55 6.69 (28%)/0.243 (90%) 1.04/7.70 0.11 (89%)/0.123 (98%)
4 2.75/0.13 0.38 (86%)/0.076 (42%) 3.31/2.48 6.50 (-96%)/0.120 (95%) 3.45/7.86 1.81 (47%)/0.076 (99%)

average improvement: 62%/69% 27%/93% 67%/98%

Errors were averaged on each axis to eliminate the noise effect. All values are shown in absolute terms.
The improvement (%) of x relative to y = 1− x

y
, the computation is the same for the other parts in the paper.
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Fig. 3. Predicted error of accelerometer (left) and gyroscope (right) of test sequence EuRoC-MH 02 easy. All data were averaged every ten samples. The
predicted error has the same trend as the raw error.

Table II shows the sensor error comparison results. For each
sequence, we averaged the error on each axis to eliminate
the noise influence. We show that our method removed the
accelerometer and gyroscope errors by an average of 52%
and 86%, respectively. Figure 3 shows the comparison of
raw errors and our predicted errors on one test sequence.
For the accelerometers, we were unable to predict high-
frequency large noise errors. However, our predicted errors
had the same trend as the raw errors, which indicates that our
method eliminates the major low-frequency errors. Similarly,
for the gyroscope with lower noise, low-frequency errors were
predicted while high-frequency noise errors remained. Figure 4
illustrates the comparison of raw and our calibrated angular
velocities for one test sequence. Our method shifted the signal
slightly, which is visually hard to notice. However, the errors
were reduced by more than 60%.

D. Evaluation of Calibration Effect for Inertial-based Odom-
etry

The evaluation of the velocity, orientation, and position that
are calculated from calibrated IMU data allows an intuitive
perception of the change caused by the calibration. Thus, we
inferred and evaluated these data from raw IMU data and

calibrated IMU data using the kinematic motion model (3), (4),
and (5).

1) Comparison of Orientation Estimates: We evaluated the
orientation estimates using the following metrics:

• Absolute Orientation Error (AOE): the root mean square
error (RMSE) between the ground truth and inferred
orientation for a whole trajectory sequence as

AOE =

√√√√ 1

n

n∑
i=1

|| logSO3(R
T
i R̂i)||22, (32)

where Ri and R̂i denote the ground truth and inferred
rotation matrices from the angular velocity at time step i
through (3). logSO(3)(·) is the SO(3) logarithm map.

• Absolute Yaw Error (AYE): the RMSE between the
ground truth and inferred yaw error for a whole trajectory
sequence as

AYE =

√√√√ 1

n

n∑
i=1

||γi − γ̂i||22, (33)

where γi and γ̂i denote the ground truth and inferred yaw
at time step i. We measure AYE for comparison with the
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TABLE III
ABSOLUTE ORIENTATION ERROR/ABSOLUTE YAW ERROR (IMPROVEMENT) [DEG/DEG (%)] ON EUROC TEST SEQUENCES.

Huang et al.1 Buchanan et al.2 DUET1

No. Madgwick et al. Baseline∗ Method Baseline∗ Method Baseline∗ Method

1 115.11/44.07 -/0.67 -/1.35 (-101%) 3.21/- 2.86 (11%)/- 6.20/5.17 4.78 (23%)/3.43 (34%)
2 100.04/41.67 -/1.02 -/1.19 (-17%) 0.89/- 0.76 (15%)/- 1.46/1.13 1.96 (-34%)/1.29 (-14%)
3 85.25/29.46 -/1.80 -/1.00 (44%) 4.78/- 1.87 (61%)/- 1.91/1.28 1.73 (9%)/1.12 (13%)
4 110.74/42.20 -/1.94 -/1.63 (16%) 3.78/- 1.31 (65%)/- 3.86/3.02 3.66 (5%)/1.57 (48%)

1 Integration from IMU data only.
2 Fusion with visual features.
∗ All baselines are Brossard et al., but were evaluated in different ways.
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Fig. 4. Raw and deep calibrated angular velocity of test sequence EuRoC-
MH 04 difficult. Our method removed the slight drift from raw angular
velocity.

TABLE IV
ABSOLUTE ORIENTATION ERROR UNCALIB/CALIB [DEG/DEG] ON

TUM-VI TEST SEQUENCES.

No. Madgwick et al. Brossard et al. DUET

5/8 115.44/14.45 15.45/2.49 1.77/1.72
6/9 59.11/3.55 18.70/0.99 1.12/1.09

7/10 104.80/5.37 20.02/2.02 2.05/1.91

competing method Huang et al. [15] as it only reported
this metric.

In terms of the orientation estimates, the closest works
to ours are Brossard et al. [14], Huang et al. [15], and
Buchanan et al. [20]. For the EuRoC dataset, we ran
Brossard et al. ten times with the same setting using the
source code they provided, then took the average results as the
baseline for the comparison. Huang et al. and Buchanan et al.
also used the results of Brossard et al. as baselines. However,
the baselines were evaluated in different environments and
metrics. Thus, we used the results provided in their papers
directly and show relative improvement for comparison. Note
that Huang et al. only reported AYE while Buchanan et al.
reported AOE. For better comparison, we reported both. In

addition, we calculated the AOE and AYE resulting from
the Madgwick orientation filter [37] for comparison with
traditional filter-based methods. For TUM-VI (Uncali) and
TUM-VI (Cali), we compared with Madgwick et al. and
Brossard et al. that used the same evaluation strategy as on
EuRoC.

Table III summarizes the results on EuRoC. Overall, errors
of learning-based methods are smaller than that of the tradi-
tional IMU-only filtering-based method, which is consistent
with the findings in OriNet [16]. In terms of absolute yaw
error, we slightly outperformed Huang et al., even though they
use a more sophisticated TCN network structure. However, in
the case of AOE, Buchanan et al. is better than ours. There
are two reasons for this. First, they directly use ground truth
bias for learning and prediction. This allows them to learn pure
biases of the gyroscope without any external impact. However,
we use orientation for model learning, which is more practical
but is affected by noise and dynamic motion. Second, the
results may have been caused by network differences because
they use a more sophisticated Transformer network, while we
use the basic CNN network. Note that in this work, instead of
using complex networks and optimizing network parameters
to improve performance, we focus on a more general and
practical framework for deep IMU calibration from dynamic
high-precision motion data for inertial-based odometry.

Table IV shows the AOE on uncalibrated and calibrated
TUM-VI dataset. For the synthesized uncalibrated sequences,
we achieved an improvement of over 90% compared to the raw
data and outperformed the Brossard et al. by 10% to 20%. This
indicates that our method can remove the gyroscope sensor
error and improve the accuracy of orientation estimates. Even
for calibrated sequences, our method achieved an improvement
of more than 50% in orientation estimates and was comparable
to that of Brossard et al.

2) Comparison of Velocity Estimates: We evaluated the
performance of calibrated acceleration by comparing the in-
ferred velocity with that of raw acceleration using the absolute
velocity error (AVE), which is defined as:

AVE =

√√√√ 1

n

n∑
i=1

||vi − v̂i||22, (34)

where vi denotes the ground truth velocity at time step i, and
v̂i is the velocity computed through (4) from the acceleration.
To eliminate the impact of orientation errors, we rotated
the acceleration using the ground truth orientation. We only
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TABLE V
ABSOLUTE VELOCITY ERROR AND IMPROVEMENT [m/s (%)] ON EUROC

TEST SEQUENCES.

No. Raw MSE DUET

1 11.66 11.26 (3%) 0.76 (93%)
2 6.85 2.85 (58%) 0.99 (86%)
3 4.88 0.62 (87%) 1.02 (79%)
4 7.20 3.52 (51%) 3.51 (51%)

measured the AVE on EuRoC dataset as they provided the
accurate velocity ground truth. In addition, we replaced our
loss function using mean square error (MSE) and trained using
the ideal acceleration that was derived from the interpolated
ground truth velocity and orientation through (30). This fol-
lows the same idea as in [21].

Table V summarizes the AVE on EuRoC test sequences.
Compared to the results from the raw acceleration, we im-
proved the accuracy by more than 50% on all test sequences.
Besides, we reduced the error to nearly 1 m/s on three of the
test sequences. Compared to the results based on the MSE
loss function, we achieved comparable results that were more
robust. This demonstrates that our proposed position-based
loss function not only achieves a similar effect as based on
ground truth acceleration, but also effectively avoids network
overfitting and being affected by anomalous acceleration.

Although accelerometer calibration can be achieved on the
basis of ground truth acceleration, in practice it is difficult
to obtain relatively accurate acceleration using only high-
precision pose tracking devices. Current studies [19] typically
extrapolate this information solely from ground truth positions
and orientations as

ai =
pi+1 − 2pi + pi−1

∆t2
. (35)

However, this derivation is impaired in practice by the position
jitter of the tracking system. As shown in Figure 5, the
derived acceleration changed abruptly and had higher noise
than the raw acceleration, due to sharp fluctuations in the
position ground truth. Therefore, our proposed position-based
method is more flexible and robust than methods based on
accelerations and angular velocities.

3) Comparison of Position Estimates via Inertial-only
Odometry: Position estimates are the most relevant indicator
for inertial-based odometry. Thus, we inferred the position
from calibrated IMU data using the kinematic motion model
used in inertial-based odometry. Then we compared the results
with that of raw IMU data. We also compared the results
from IMU data calibrated for the gyroscope only to evaluate
the effect of calibrating for both the gyroscope and the
accelerometer. To evaluate the accumulated error of inertial-
only odometry, we used the relative translation error (RTE),
which is computed as follows:

RTE =
1

m

m∑
i=1

√√√√ 1

n

n∑
j=1

||p̂j,T ′ − pj,T ′ ||22, (36)

where p and p̂ are the ground truth position and the estimated
position, respectively. n is the number of samples during
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Fig. 5. Comparison of raw acceleration and derived acceleration from ground
truth positions and orientations of EuRoC MH 02 easy (left) and TUM-
VI Cali Room2 (right). The derived acceleration suffered from position
fluctuation.
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Fig. 6. Relative Translation Error (RTE) in 30 s on the test sequences of
EuRoC (top), TUM-VI Uncali (middle), and TUM-VI Cali (bottom). Our
method significantly reduced the accumulated error on the sequences that use
uncalibrated IMU while slightly improved the accuracy on the sequences that
use calibrated IMU.

a duration window T ′. We randomly chose m segments of
length T ′, computed the estimated position from a ground
truth start, and then averaged the results. RTE is more suitable
than absolute translation error for evaluating inertial-only
odometry because it excludes the influence of sequence length
on the results and focuses only on the accumulated error
over a specific duration. We set m = 50, T ′ = 30s in our
experiments.

As shown in Figure 6, the position estimates were unreliable
on EuRoC and TUM-VI (Uncali) datasets, in which the IMUs
were uncalibrated. In contrast, our method reduced the position
error accumulated in 30 s by approximately 90%, when
compared to that obtained from raw IMU data. Even compared
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TABLE VI
ABSOLUTE TRANSLATION ERROR (M) ON ALL TEST SEQUENCES.

No. Zhang et al. [18] Buchanan et al. [20] Raw DUET No. Raw1 DUET No. Raw DUET

1 0.15 0.13 0.084 0.072 (14%) 5 - 0.244 8 0.053 0.122 (-130%)
2 0.14 0.25 0.131 0.113 (14%) 6 - 0.211 9 0.024 0.084 (-250%)
3 0.15 0.17 0.194 0.165 (15%) 7 - 0.156 10 0.064 0.063 (2%)
4 0.10 0.10 0.159 0.095 (40%)

1 Vins-mono with raw IMU data failed in test sequence 5, 6, and 7.
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Fig. 7. Relative Translation Error (RTE) on test sequence MH 04 difficult
of EuRoC dataset. The error from raw IMU data exponentially increased with
time, while our method reduced the accumulated error to 10 m in 30 s.

to the position estimates from the already well-calibrated
IMU, we reduced the errors by at most 30%. Moreover, our
accumulated errors were reduced by at least 20% compared
to the errors of calibrated gyroscope only. This indicates that
calibrating the gyroscope and accelerometer further reduces
the error accumulation rate than calibrating the gyroscope only.

Figure 7 illustrates the error accumulation with time for
one test sequence of EuRoC. The position errors from raw
IMU data and IMU data measured only with accelerometer
calibration increase exponentially with time, and exceed 1 km
in 30 s. Our method slows down the rate of error accumulation
and reduces the error to 10 m in 30 s. Compared to only
gyroscope calibration, the error is reduced by more than 50%.

4) Comparison of Position Estimates via Visual-inertial
Odometry: Data-driven IMU calibration is still being stud-
ied as a promising approach to improve the accuracy and
robustness of VIO. As Zhang et al. [18] and Buchanan et
al. [20] reported, the processed IMU data through data-driven
methods improved the position estimate accuracy of VIO by
at most 66%. In this work, we evaluated the position estimates
from VINS-Mono [38] with raw IMU data and our calibrated
IMU data to assess the impact of data-driven IMU calibration
on VIO in different scenarios. Note that we only listed the
results of competing methods but did not directly compare
them because each method was based on a different VIO
algorithm. We used the absolute translation error (ATE) to
measure the performance, which is computed as

ATE =

√√√√ 1

n

n∑
i=1

||p̂i − pi||22, (37)

DUETRaw

alignment with ground truth

Raw
DUET

Ground truth

 (m)x

 (m
)

y

Fig. 8. VIO 3D (top) and horizontal (bottom) trajectories of TUM-VI Uncali
Room 2 sequence. VIO with raw IMU failed when visual information was
unstable. Our data-driven calibrated IMU data helped VIO overcome the
unstable period and ensured continued odometry.

where n is the number of samples over a whole sequence.
Table VI shows the ATE on all test sequences. For EuRoC

test sequences (No.1-4), our calibrated IMU data reduced
the position estimates error by an average of 20%. This
improvement is limited because the good visual conditions of
these sequences allowed high accuracy of VIO. For TUM-VI
Uncali test sequences (No.5-7), the VINS-Mono failed with
raw IMU data. As shown in Figure 8, a dramatic position
drift appears at the beginning of VIO with raw IMU trajectory.
This is because TUM-VI does not start from a stationary state
and the fast rotation challenging scenes are difficult to track
accurately at the beginning, resulting in the IMU not being
well calibrated in real-time. In contrast, our calibrated IMU
helps VIO overcome the shaky start and ensure continued
odometry. This indicates that our method can improve the
robustness of VIO, especially for challenging visual situations.
However, for TUM-VI Cali test sequences (No.8-10), our
method was not able to further improve the calibrated IMU
but had a negative effect on the position estimates accuracy
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of VIO. This is because performing data-driven calibration on
the IMU data that has already been optimized using the global
optimization method impairs the data and further leads to a
reduction in the position estimate accuracy. This indicates that
our method is not applicable to optimized and processed IMU
data.

In Section IV-C, we showed that our method successfully
predicted the low-frequency sensor errors and removed them
from the raw gyroscope and accelerometer measurements.
In Section IV-D1, Section IV-D2, and Section IV-D3, we
conducted experiments in terms of IO and showed that our
method reduces the orientation, velocity estimates errors as
well as the error accumulation rate. We verified the feasibility
of data-driven IMU calibration from high-precision tracking
trajectory only, which is a promising method for calibrating
IMU in VIO. To further explore the impact of our method
on VIO, in Section IV-D4, we conducted experiments on
three different scenarios. The results showed that: 1) for good
visual conditions and uncalibrated IMU, our method slightly
improves the position estimates accuracy; however, 2) for
calibrated IMU, our method impairs the position estimates; 3)
once visual information is temporarily unreliable, our method
is an effective way to improve the robustness and accuracy of
VIO.

E. Discussion on Impact of Bias Changes

We note that in Table II, the error reduction on the gyro-
scope is better than on the accelerometer. This is primarily due
to the substantial changes in accelerometer errors, especially
for the biases. This issue is also known as the generalization
issue of data-driven approaches, i.e., trained on one domain
and tested on another domain suffered from performance
degradation [27]. Therefore, we provide experimental evalua-
tion regarding the impact of bias changes on the data-driven
model performance. We analyzed this impact by investigating
provided biases of EuRoC sequences and performing further
experiments through the training-test splitting of the data
collected on different days.

As shown in Figure 9, we calculated the mean bias of each
sequence in EuRoC. Overall, the biases of the acceleration
vary considerably for each sequence. This has resulted in a
general AVE improvement in the range of 80% to 90%, as
shown in Table V. Notably, the acceleration biases of the
V2 02 medium sequence in the x-axis and the y-axis were
completely different from others. These can be considered
outlier patterns for the data-driven model, resulting in only a
51% improvement in AVE. In contrast, the changes in biases

TABLE VII
ERRORS AND IMPROVEMENT (AOE: [DEG (%)], AVE: [m/s (%)]) ON

EUROC TEST SEQUENCES.

Test seq. AOE (Madgwick et al./DUET) AVE (Raw/DUET)

V1 02 medium 76.81/1.91 (98%) 2.56/1.64 (36%)
V1 03 difficult 85.25/1.34 (98%) 4.88/0.63 (87%)

V2 01 easy 111.92/8.73 (92%) 9.25/5.32 (42%)
V2 02 medium 110.74/5.34 (95%) 7.20/3.33 (54%)
V2 03 difficult 92.92/4.59 (95%) 5.89/7.15 (-21%)
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Fig. 9. Biases of acceleration (left) and angular velocity (right) for each
sequence of EuRoC. The ground truth biases were estimated by fusing IMU
measurements and high-precision tracking data. We take the mean bias of
each sequence and each axis.

for angular velocity are more minor than those for acceleration.
As such, the AOE has more than 90% improvement on all test
sequences.

The low-cost MEMS IMU errors vary with time. To further
validate the impact of error changes on model performance,
we split the EuRoC into training and test data according to the
data collection time, i.e., five MH sequences collected on the
same day into training data and five V(icon) sequences into
test data. Among the five test sequences, V1 02 and V1 03
were collected one day after the collection of MH sequences,
and the other three test sequences were collected four months
later.

A similar finding is evidenced by the results in Table VII.
The model consistently performs above 90% in reducing the
AOE where the bias changes among all sequences are not
substantial. Nevertheless, the performance still degraded by
about 5% on the test sequences collected four months later. As
for the acceleration error mitigation, the model performance
has degraded due to the large magnitude of bias changes. The
average AVE improvement in the first four test sequences
is 55%, ranging from 36% to 87%. On the V2 03, the
completely different biases on all three axes result in a negative
improvement on the AVE.

The generalization problem is always a major challenge
for deep learning methods. Further experiments have shown
that large differences between training and test data patterns
lead to model performance degradation, which confirms the
challenges summarized in the previous work [27], [39]. We
now provide two points that we consider useful to solve this
issue and push the model into practice in the future: 1) the
current proposed method does not take into account the factors
that will significantly affect the errors such as temperature,
dynamic forces, etc. The integration of these variables into the
data-driven model may improve the adaptability of the model
to different scenarios; 2) it may prove helpful to integrate the
current framework with potential online adaptation learning
strategies, such as few-shot learning and test-time optimiza-
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(a) Error trend with respect to T .

training time per epoch

accel loss ℒ1

gyro loss ℒ2

T is not  
a power of 2

T is  
a power of 2 polynomial fit

(b) Running time trend with respect to T .

Fig. 10. The effect of T on (a) model performance; and (b) training time. As T increases, RTE and AVE decrease and stabilize until T reaches 64. AOE is
lower when T lies between 64 and 128. The running time increases with T , which is mainly caused by the increased computation time of L2.

tion.

F. Discussion on Choice of T

In our loss function, T is a key hyperparameter because it
affects the effectiveness of model learning and training time
complexity. Thus, we emphasize a few important points to
choose a proper T successfully. We evaluated the effect of
different T on the training time and the mode performance on
the EuRoC dataset, respectively.

As shown in Figure 10a, as T increases, RTE and AVE
decrease and stabilize when T reaches 64. This exhibits the
negative effect of position jitter on model training when T
is small, e.g., T = 4, and verifies that increasing T mitigates
this effect effectively. However, AOE increases as T continues
to increase, e.g., from 128 to 256. This is because our loss
function aims to minimize the error of accumulated values
within T windows, and an overly large T , that is, a large
window size, would be detrimental to learning local error
patterns and thus reduces the accuracy. This type of variation
is similar to a low-pass filter in that a suitable value is chosen
to reduce high-frequency noise and ensure that the necessary
information is not lost.

Figure 10b illustrates the 1) training time per epoch; 2)
computation time of L1; 3) computation time of L2 with
respect to T . As T increases, the total training time increases,
which is mainly caused by the increased computation time
of L2. We compute the accumulated orientation within each
window in parallel. Thus, the larger T is, the more rotation
matrices need to be multiplied within each window. However,
by computing two adjacent cumulative orientations in parallel
within each window, the time complexity of L2 can be reduced
from O(T ) to O(log(T )) when T is an exponent of 2 [14].
Therefore, as shown in Figure 10b, the running time does not
increase noticeably when T is a power of 2. We note that
T does not affect the computation time of L1. In calculating
L1, we first rotate all accelerations into the fixed world frame,

then divide them according to the window size T and sum up
accelerations within each window. Because T has a negligible
impact on the computation time of the summation and the
acceleration rotation is independent of T , the computation time
of L1 does not vary with T .

The choice of T depends on the extent of the jitter in
the ground truth motion data of the training set. Also, while
guaranteeing the performance of the trained model, a smaller
T can shorten the training time.

V. CONCLUSION AND LIMITATIONS

We present a deep data-driven IMU calibration method for
learning and compensating for sensor errors. The learning
model is designed by fully considering the sensor error and
kinematic motion models. This allows our method to learn
the sensor error solely from high-precision positions and
orientations. Compared with similar learning-based methods,
our proposed method is more generally practical and straight-
forward because it does not require additional sensors and
data processing techniques for the captured data to learn the
calibration model. By compensating for run-time sensor errors,
our method reduces the IO error accumulation rate, which we
demonstrated with comprehensive experiments on two public
VIO datasets. We show that our method reduces the absolute
translation error of the baseline VIO method by 20% on
average in scenarios with good visual information and ensures
consistent odometry in unstable visual conditions.

Though learning-based methods have been shown to out-
perform traditional methods in some cases, there are still
challenges in their deployment in real-world scenarios. For
example, performance degradation in real-world applications
may occur due to significant data gaps and sudden outliers.
Traditional methods, on the contrary, still possess unique
advantages in these situations. Future work should address how
an integration of the strengths of both approaches would push
the state of the art even further.
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