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Abstract— Distal facial Electromyography (EMG) can be
used to detect smiles and frowns with reasonable accuracy.
It capitalises on volume conduction to detect relevant muscle
activity, even when the electrodes are not placed directly on the
source muscle. The main advantage of this method is to prevent
occlusion and obstruction of the facial expression production,
whilst allowing EMG measurements. However, measuring EMG
distally entails that the exact source of the facial movement is
unknown. Therefore, we investigated whether we could identify
specific Facial Action Units (AUs) from distal facial EMG
after an initial calibration phase with Computer Vision (CV).
We compared Support Vector Machines (SVM) and Random
Forest (RF) with several types of feature engineering and early
fusion of the two modalities. The detection performance for
AU6 (Orbicularis Oculi) and AU12 (Zygomaticus Major) was
estimated by calculating the agreement with Facial Action
Coding System (FACS) certified coders. The best results were
achieved using Random Forest. Using a fusion of CV and
EMG features resulted in F1 scores of 0.83 for AU6; and
the fusion of engineered EMG plus CV returned an F1 score
of 0.81 for AU12. Both these results are well above the CV
baseline that shows F1 scores of 0.56 and 0.62 for AU6 and
AU12 respectively. This demonstrates the potential of distal
EMG to detect individual facial movements. It also enables
researchers to compare the results measured with this wearable
device to psychological research on facial expressions using
FACS. Using a wearable enables measurements with higher
ecological validity. Finally, we observed that EMG activity starts
before the onset of visually perceived movement. Because of this,
the agreement between EMG-based methods and FACS coders
might be underestimating the ground truth.

I. INTRODUCTION

Smiles are a facial expression characterised by the corner
of the lips moving upwards. This movement is generated
by the Zygomaticus Major muscle (ZM). Smiles are the
prototypical facial expression of happiness [9]. However,
smiles can also be produced and perceived with other social
communication aims [23]. The so-called Duchenne marker,
or movement from the Orbicularis Oculi muscle (OO), often
co-occurs with the ZM activity. Whilst it has been claimed
that the Duchenne marker is a signal of smile spontaneity [9],
[12], [8], other studies have found this marker in posed
smiles as well [33].
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The Facial Action Coding System (FACS) [11] is a method
to identify facial movements. Movements are described as the
configuration of Action Units (AUs) in a standardised manner
without judging the underlying emotion or the communicated
message. These AU configurations can be used by experts to
make inferences in the frame of different theories of emotion.
In the FACS, the lip corner pulling upwards is labelled as
Action Unit 12 (AU12), and the movement around the eyes
in the form of a cheek raiser is labelled as AU6. AU6 is
also the AU associated with the Duchenne Marker. FACS
labelling usually requires a trained coder to watch and assess
a video on a frame-by-frame basis. This is a time-consuming
and cumbersome method, therefore, there have been several
attempts to automatise AU detection.

Computer Vision (CV) algorithms [1] are an alternative
to humans measuring AUs by visual inspection [10]. Ad-
ditionally, the underlying muscle activity can be measured
with Electromyography (EMG) [42], [34]. The standard
method is to place the EMG electrodes directly on top of
the relevant muscle to increase Signal-to-Noise Ratio (SNR).
More recently, several studies have proven the feasibility of
measuring facial expressions with distal EMG [16], [15].
Distal EMG refers to measuring muscle activity from a
body location that is distant from the relevant muscle. Distal
EMG measurements are possible through volume conduction
whereby the electrical activity generated by each muscle
spreads to adjacent areas [42]. By measuring EMG distally,
the unnatural obstruction that the electrodes pose to the
production of facial expressions is reduced. Despite this
advantage, distal measurements make it difficult to know the
exact location of the EMG activity source. Hence, current
technology has been used only to identify grouped muscle
activity such as smiles or frowns. Detecting such facial ex-
pressions from EMG has its own merit, such as high temporal
resolution and robustness against occlusion. However, to
compare the knowledge drawn using this technology to the
large body of facial expression research that uses AUs as
the basis of analysis, we need to identify muscle movement
activity at the AU level.

We propose a Sensing-Source framework to analyse
sensed signals by estimating their sources. Since AUs are
closely related to individual muscle activity, we refer to them
as “sources” (Figure 1). Sources are facial movement units978-1-6654-3176-7/21/$31.00 ©2021 IEEE
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Fig. 1. Sensing-Source framework. Sensors often do not read the signals
of interest but rather a mixture of those signals and other artefacts that can
be considered noise. In some cases, the measured signals can be considered
directly as the sources.

caused by a certain muscle. These individual sources often
move together to form visible facial expressions such as
smiles. We apply Independent Component Analysis (ICA) to
the EMG signal to go from a sensed signal mix to the source
signals underlying the observed movement. Next, we use an
initial segment of the resulting ICA components to match
components to AUs through cross-correlation with the con-
tinuous AU signals estimated from videos with OpenFace.

By combining CV- and EMG-based methods, it is possible
to create an AU identification system that works in recording
sessions where high movement or high facial occlusion are
expected. In those cases, CV alone would struggle to con-
tinuously identify certain AUs. On the other hand, wearable
distal EMG can deal with occlusion and movement, but it
cannot disentangle AUs so easily. Therefore, we investigated
the possibility to detect AUs with distal EMG, and compared
the performance of single-modality models to multimodal
models. We devised a method to pre-select the AU sources
from EMG and compared these feature-engineered inputs to
regular EMG pre-processing.

II. RELATED WORK

Accurate automatic AU detection has been one of the main
challenges for affective computing scientists over the past
decades. State-of-the-art methods use Computer Vision. It
was only in the last decade that wearable EMG has started
to be seen as a viable alternative. Here, we review the most
relevant works from both perspectives. Nevertheless, it is
important to note that most works use EMG to identify facial
expressions as a whole, and, to the best of our knowledge, our
work presents the first attempt to detect AUs using wearable
distal EMG.

EMG Channel 4

EMG Channel 3

EMG Channel 1

EMG Channel 2

Fig. 2. Wearable used to measure distal EMG from four channels placed
on the sides of the face, on both temples of the head. This configuration
enables facial expression identification without obstructing the face. How-
ever, this makes identifying which muscle produced the measured activity
challenging.

A. EMG-based identification

Compared to traditional EMG measurements, a reduced
set of electrode positions has proven to yield high facial
expression recognition rates of 87% accuracy for seven
posed facial expressions, including sadness, anger, disgust,
fear, happiness, surprise and neutral expressions. This subset
includes electrodes placed on the Corrugator and Frontalis
muscles on the forehead; and Zygomaticus Major (ZM) and
Masseter muscles on the cheek [35]. Distal EMG has been
used to identify different facial gestures by using different
electrode configurations. Two EMG bipolar channels were
placed on the Temporalis muscle on each side of the face, and
one placed on the Frontalis muscle gave input to distinguish
ten facial expressions. The achieved accuracy was 87%
using a very fast versatile elliptic basis function neural
network (VEBFNN) [16]. Although not all gestures were
facial expressions of emotion, they did include symmetrical
and asymmetrical smiling, raising eyebrows, and frowning.

Distal EMG has been implemented as a wearable designed
to keep four EMG channels attached to the sides of the face
at eye level (Figure 2). With this placement, it is possible
to reliably measure smiles in different situations without
obstructing facial movement [30], [14]. This is possible
because smile-related distal activity measured from the ZM
is sufficiently large to be robust against non-affective facial
movements such as chewing gum and biting [27], [42], [15].
Hence, the information picked up by the four channels is
used to approximate different sources of muscular activity
using ICA [7]. The separated components contain muscle
activity involved in generating smiles and can be used to
identify these [15]. This approach can be used offline for
fast and subtle spontaneous smile identification [30] and it
is possible even in real time [40]. Finally, this device has
also been used to analyse spatio-temporal features of a smile
by fitting envelopes to the EMG’s Independent Components
(ICs), and later performing automatic peak detection on those
envelopes [31] with performance similar to that achieved by
Computer Vision [29]. Furthermore, four EMG leads placed
around the eyes in a Head-Mounted Display (HMD) have
been used successfully to identify facial expressions distally
even when the face is covered by the HMD. Facial expres-
sions of anger, happiness, fear, sadness, surprise, neutral,



clenching, kissing, asymmetric smiles, and frowning were
identified with 85% of accuracy [3]. Another recent work
proposed the use of a thin sticker-like hemifacial 16 electrode
array to paste on one side of the face and identify ten
distinct Facial Building Blocks (FBB) of different voluntary
smiles. Their electrode approach is novel, robust against
occlusion, and provides a higher density electrode array
than that of the aforementioned arrangements. This enabled
them to use ICA and clustering to define several FBB
corresponding to a certain muscle [18]. Nevertheless, they
require electrode usage proximal to each muscle. This entails
that a large sticker needs to be placed on the skin, obstructing
spontaneous facial movement through increased stiffness.
Moreover, the physical connection of the electrode array
enhances artefact cross-talk between electrodes. To eliminate
such cross-talk, ICA was used and the resulting clusters
were derived manually. Finally, two around-the-ear electrode
arrays with 18 channels have been used to successfully
identify reading, speaking, chewing, jaw clenching, and six
posed emotion expressions (i.e., happy, angry, disgusted, fear,
sadness, surprise) with a Random Forest classifier. These
electrodes are able to measure both Electroencephalography
(EEG) and distal EMG. Smiles were identified with an F1
score of 0.83 [20].

B. CV-based identification

Computer Vision (CV) is the most widely used technique
for identifying facial expressions [2], even at the individual
AU level. The ubiquitous presence of cameras and its ease
of use make it the method of choice for scenarios where
the face is still and unobstructed. There are different ap-
proaches to extract relevant features for AU identification
and intensity estimation. Among these, appearance-based,
geometry-based, motion-based, and hybrid approaches. Sev-
eral algorithms show F1 scores in the range between 0.45 and
0.57 for occurrence detection and between 0.21 and 0.41 for
intensity estimation [24]. The OpenFace toolkit 2.0 [1] is
a CV pipeline for facial and head behaviour identification.
Its behaviour analysis pipeline includes landmark detection,
head pose and eye gaze estimation, and facial action unit
recognition. This algorithm detects AU 1, 2, 4, 5, 6, 9, 12, 15,
17, 20, 25, 26 with an average accuracy of 59 %. According
to a benchmark conducted by the authors of a Python facial
expression analysis toolbox PyFeat [4], OpenFace is the best
performing algorithm for AU6 and AU12 with F1 scores of
0.81 and 0.83, respectively. Moreover, a Twin Cycle Auto
Encoder can be used to extract representations for AUs
in a self-supervised manner. The results show F1 scores
for 3 datasets between 0.48 and 0.75 for AU6 and 0.76
and 0.85 for AU12 [22]. Model-agnostic meta-learning in
combination with few-shot learning achieved accuracies of
0.87 for AU6 and 0.83 for AU12 on the DISFA and 0.81
for AU6 and 0.86 for AU12 on the BP4D dataset [21]. JAA-
Net (Joint Facial Action Unit Detection and Face Alignment
via Adaptive Attention) is an end-to-end deep learning
framework with an attention learning module that proposes
a novel AU detection method that combines face alignment

with facial landmarks and local AU detection to improve
AU detection performance. This method yields F1-scores of
0.78 and 0.87 for AU6 and AU12 respectively [36], [38].
Convolutional Neural Network evaluations on multiple views
of the face have shown F1-scores of 0.77 for AU6 and
0.88 for AU12 [32] on the BP4D database. Considering
multi-view algorithms is an important step to use CV in the
wild. The recent Matlab framework Automated Facial Affect
Recognition framework (AFAR) is an attempt to bridge the
gap between expensive commercial tools of unknown validity
and hard-to-use open-source tools. It automates AU detection
by relying on pretrained models, and provides the option for
users to fine-tune the network performance with their own
datasets [13].

III. DATA SET
This data is a subset of the data generated in a previous

study exploring posed and spontaneous smiles [28]. Since
we are only interested in detecting AUs, regardless of the
nature of the smiles, we collapsed the data from different
experiment conditions into one.

A. Participants

41 producers took part in the study (19 female, average
age = 25.03 ± 3.83 years). All the participants had normal
or corrected-to-normal vision. This research was approved
by the Institutional Ethical Committee of the University
of Tsukuba with review code 2017R176. From these, 10
participants were removed as they did not show enough AU6
samples to allow for cross-validation.

B. Experiment design

The experiment consisted of several blocks. All the pro-
ducers completed all the experimental blocks in the same
order. This was to keep the purpose of the experiment hidden
during the spontaneous block.

1) Spontaneous Block (S-B): A positive affective state
was induced using a 90 s humorous video. After the stimuli,
a standardised scale assessing emotional experience was
answered. Next, producers were asked to tag any facial
expressions that they had made.

2) Posed Block (P-B): Producers were requested to make
similar smiles as they did in the S-B. However, this time, a
90 s slightly negative video was presented. Their instruction
was: “Please perform the smiles you video coded. This is
for a contest. We are going to show the video we record to
another person, who is unknown to you, and if she or he
cannot guess what video you were watching, then you are a
good actor. Please do your best to beat the evaluator”. After
watching the video and performing the task, they completed
the same standardised scale assessing emotional experience.
They were also asked to tag their own expressions.

C. Measurements

Smile-reader: Four channels total of distal facial EMG
were measured from both sides of the face using dry-active
electrodes (Biolog DL4000, S&ME Inc) sampled at 1 kHz
(Figure 2).



Sensed 
signal mix

Source 
signals

Matching

Camera

EMG

xcorr

labeling

AU 

Approximated 
components

OpenFace

ICA

AU6 NoiseAU12

Identification function

IC1

IC2

IC3

max 
xcor

max 
xcor

max 
xcor

1 2

Fig. 3. Feature engineering. AU labels are independently extracted from
CV. Then the information derived from CV is used to identify which ICA
components of the EMG are likely to correspond to each AU type. The
matching is done by cross-correlating the three independent components
(ICs) derived from EMG to CV AU12, CV AU6 and to Gaussian noise
representing a mix of other facial movements. Finally, a threshold of the
mean plus 20 standard deviations are used to determine the AU presence in
the identified ICA components, independently of the CV labels.

Video recordings: A video of the producer’s facial ex-
pressions was recorded using a Canon Ivis 52 camera at
30 FPS.

Certified FACS labels: Two certified FACS coders la-
belled the intensity of AU6 and AU12 on a frame-by-frame
basis. The coding of both FACS coders was combined with
an OR logic operator. Coded intensities were averaged. To
score AU presence, a minimum intensity value of 1 (level
A) was used.

IV. DATA ANALYSIS

A. EMG Pre-processing

The four EMG channels were first passed through a
custom Hanning window with a ramp time of 0.5 s to avoid
the introduction of artificial frequencies by the filtering at
the start and the end of the signal. Afterwards, the signals
were (1) linear detrended, (2) transformed to have zero mean
and one standard deviation, (3) band-pass filtered from 15 to
490 Hz and (4) rectified. These bandpass frequencies were
previously reported to be optimal for detecting facial muscle
movement. Frequencies below 15 to 25 Hz and above 400
to 500 Hz contain undesired artefacts [41].

B. CV-based AU labelling

Using AFAR: AFAR is a toolbox that provides an auto-
mated AU detection pipeline, which consists of face tracking,
face registration, AU detection and visualization [13]. The
toolbox uses a deep neural network to perform AU detection
using pre-trained models [5]. The model returns probabilities
for the presence of AUs in a continuous manner. We only
used the outputs for AU6 and AU12.

Using JAA-Net: JAA-Net is a deep learning based AU
detection framework that exploits the common features be-
tween AU detection and face alignment tasks to improve the
robustness of AU detection [37], [38], [39]. The model output
was in the same format as from the AFAR toolbox and only
AU6 and AU12 were used.

Using OpenFace: The Facial Behaviour Analysis Toolkit
OpenFace 2.0 was used to identify several facial features in-
cluding AUs. This is an end-to-end deep learning framework.

TABLE I
AUC METRIC OF OPENFACE, AFAR AND JAA-NET COMPARED TO

FACS CODING FOR AU6, AU12 OF OUR DATASET

AU6 AU12
OpenFace 0.81 0.77
AFAR 0.71 0.77
JAA-Net 0.58 0.50

AU identification is given both as a continuous output of
intensity ratings; and a binary output indicating AU presence.
The intensity and presence predictors have been trained
separately and on slightly different datasets, which means
that they are not always consistent [1]. In this work, we
choose to use the continuous output of the algorithm, as it
allows us to correlate the outputs with the EMG, and it is
comparable to the continuous outputs of AFAR and JAA-Net.

C. Selection of the CV reference for the matching algorithm

To select a CV-based reference model or baseline model,
we selected and evaluated three different CV algorithms
using the Area Under the (Receiving Operating) Curve
(AUC) on our dataset. OpenFace, AFAR, and JAA-Net were
selected as candidate baseline models. We used AUC because
previous research showed that all performance metrics except
the AUC were attenuated by skewed data distributions [19],
[26]. These comparisons considered both threshold metrics
(i.e., accuracy, F-score, Cohen’s kappa, Krippendorf’s alpha),
and rank metrics (i.e., AUC, the precision-recall curve).
Therefore, we choose the area under the receiver operating
curve rank metric as evaluation criteria for the selection of
our baseline model. OpenFace was finally chosen as the
baseline model because it outperforms AFAR and JAA-Net,
based on the AUC metric. Table I lists the AUC score for
OpenFace, AFAR and JAA-Net.

D. Blind-source separation

Independent component analysis (ICA) [17] was used to
automatically estimate different muscle activity sources from
the recorded EMG signals. The wearable used to collect
the data has four channels. Thus, we set the number of
decomposed components to three.

E. Feature engineering with component matching to CV-
generated labels

We propose a Component Matching (CM) method (en-
gEMG in Figure 6 and Table II). This method aims to
identify different sources or muscle groups from the recorded
distal EMG, and to assesses their similitude to AU labels
estimated with CV (Figure 3). First, blind-source separation
is used to estimate sources of facial movement; then cross-
correlation is applied to match CV-based AU output with the
estimated sources from EMG; next, ICs are tagged as AU6
and AU12. The AU presence can be then detected from the
tagged components using machine learning. Our matching
algorithm assumes that the ICA components of the EMG
signal contain AU6, AU12 and noise. Noise is defined as
electrical interference as well as other muscular source’s



activity (e.g., other AUs, chewing, jaw clenching). This
assumption is made because the participants were mostly
smiling and keeping a neutral expression otherwise. At times,
other AUs were displayed, but we are not interested in them
at this point. We calculated the cross-correlation of the three
ICA components; the continuous AU6, AU12 OpenFace CV-
labels; and a uniformly distributed random noise distribution.
Since AU12 stems from the large and strong ZM muscle,
the independent component (IC) with the highest correlation
is chosen to correspond to AU12. The other two ICs get
assigned to be AU6 and noise in order of maximum cor-
relation value. Afterwards, the ICs are downsampled from
1 kHz to 30 Hz to match the sampling frequency of the
FACS coding. Further smoothing is applied on the individual
ICs by means of a first-order Savitzky-Golay filter with
a length of 1 second. Figure 4 shows EMG components
thresholded based on standard deviation (SD) to determine
the presence of the relevant AU. For thresholding, the latter
half of a ≈ 10 s or 300 samples long neutral phase of the
IC was used as a baseline. We calculate the signal average
m and standard deviation σ from the baseline. The whole
signal then is turned into a binary vector where samples that
cross the threshold of m + kσ with k = 20 are set to one
(Figure 4). The delay between EMG activity and visible AU
label was also quantified using cross-correlation between the
selected AU EMG components (before binarization) and the
AU continuous label output from OpenFace (Figure 5). The
values set to one are thought to correspond to the activity of
the respective AU assigned to the IC during the process of
AU identification. In other words, our matching algorithm is
using an analytical technique applied on a continuous-time
series to transform the data into more relevant information
that can be thresholded by its SD or other machine learning
techniques.

F. Comparison to other Machine Learning algorithms

The baseline model was OpenFace. We fitted Support Vec-
tor Machines (SVM) and Random Forests (RF) using sklearn
in Python. A test set with 20% data was set aside to score
the models. Subject-dependent models were fitted using a
5-fold cross-validation and later scored using the test set.
AU6 and AU12 were fitted using separate binary classifiers.
The SVMs were fitted using a radial basis function (RBF)
kernel, a maximum of 1000 iterations and with a tolerance of
0.0001. RF had a maximum depth of 2 and was initialised
with the same random state. Input features to the models
were mean, standard deviation and kurtosis, extracted with
a sliding window of length 0.25 s of (a) each of the EMG
channels (EMG); and (b) the two ICA channels identified as
previously described as AU6 and AU12 (engEMG). Further-
more, feature fusion was performed on the combinations of
(c) the EMG features and CV (CV+EMG); as well as (d) the
ICA features and CV (CV+engEMG). CV features are the
AU intensity values extracted using OpenFace.
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Fig. 4. AU detection by the human-coded FACS labels (shaded areas),
and the selected components by the engEMG algorithm (blue line). By
using a threshold of the signal’s mean plus 20 SD (red dotted line), we
can identify parts of the AU signal that are relevant including the ones that
were not visible from the camera. These are areas that are not necessarily a
misclassification. However, they do not match the visual ground truth, and
therefore, EMG-based results would be penalised.

Fig. 5. The plot shows exemplary data from one participant posing smiles.
The activation patterns of EMG and CV-based AUs are similar to each
other, with the muscle activation measured with distal EMG leading camera-
detected AU movement. The four channels of raw distal EMG activate on
average 374 ms before the detected CV-based AU labels. The blue line
shows the mean of the four EMG channels plus Standard Deviation (SD).
AU6 and AU12 (grey lines) often co-occur, as shown by the green line
representing the average CV-based output. This makes identifying which
muscle produced the measured activity challenging, as EMG measures a
mix of muscle activity throughout the face.

G. Agreement with the ground truth

Human-coded FACS labels, CV-labels, and EMG-labels
were transformed to have a matching sampling rate (1 kHz).
Then the agreement between different measurements was
calculated using accuracy and the F1 score that encompasses
both precision and recall. Additionally, we calculated Area
Under the Curve (AUC) as a metric that penalises for class
imbalances.

H. Comparison between models

Comparisons were performed with the Kruskal-Wallis
rank sum test. AUC was used given the unbalanced nature of
the data, i.e., there is an unequal sample of no expression,
AU6 and AU12. For reference, comparisons using F1 are
also provided.
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TABLE II
MEAN AGREEMENT OF AU6 AND AU12 BETWEEN HUMAN FACS-CODED AND MACHINE-DETECTED AUS.

CV EMG EMG CV+EMG CV+EMG engEMG engEMG CV+engEMG CV+engEMG
SVM RF SVM RF SVM RF SVM RF

AU6 F1 0.59 0.68 0.79 0.77 0.83 0.60 0.67 0.81 0.79
Accuracy 0.89 0.70 0.94 0.81 0.95 0.60 0.92 0.87 0.94
Recall 0.39 0.68 0.79 0.77 0.82 0.60 0.66 0.81 0.78
Precision 0.33 0.68 0.81 0.77 0.85 0.60 0.70 0.81 0.83
AUC 0.72 0.58 0.65 0.66 0.68 0.57 0.60 0.68 0.70

AU12 F1 0.62 0.51 0.70 0.66 0.79 0.52 0.69 0.67 0.81
Accuracy 0.81 0.58 0.86 0.70 0.90 0.58 0.86 0.69 0.91
Recall 0.35 0.52 0.69 0.66 0.78 0.52 0.69 0.66 0.79
Precision 0.63 0.51 0.71 0.68 0.82 0.52 0.71 0.68 0.84
AUC 0.67 0.52 0.65 0.63 0.73 0.53 0.64 0.63 0.73

V. RESULTS AND DISCUSSION

Using our feature engineering method and a simple thresh-
old method, we observed that EMG activity precedes visual
movement onset (Figure 4). We compared EMG activity to
the OpenFace output (Figure 5). There was a delay between
CV AU activation and EMG activation, with EMG activation
leading by 374 ms. This was expected as EMG originates
skin displacement. This delay was larger than that observed
from proximal EMG measurements (average of 230 ms) [6].

We proposed to identify AU6 or the Duchenne Marker,
and AU12 or the movement of the mouth during smiling with
a distal EMG wearable device. Our results show that AU6
and AU12 can be identified using distal EMG. Furthermore,
we compared the performance of several algorithms. The
baseline was the OpenFace CV algorithm. The baseline did
not perform as well in our dataset as in previous reports [4].
As shown in Table II, AU6 had an F1-score of 0.59 and
AU12 an F1-score of 0.62 in our dataset as compared to

0.81 and 0.83 reported for the Extended DISFA dataset [25].
Using EMG only and RF had an advantage (F1-score 0.79
for AU6, and 0.70 for AU12). The performance scored with
F1 was also increased by fusing features from CV and EMG
(0.83 for AU6, and 0.79 for AU12), and by fusing CV and
engineered EMG features (0.79 for AU6, and 0.81 for AU12).

Using F1 as the success metric, we observed generalised
differences across classifiers (AU6: χ2(9) = 148.02, p < .001;
AU12: χ2(9) = 284.05, p < .001). RF is better than SVM
at identifying AU12 (χ2(1) = 106.64, p < .001). This also
holds marginally for AU6 (χ2(1) = 4.67, p = .03). This might
indicate that RF is better at detecting Action Unit elements
from facial expressions than SVM. Overall, the fusion of
two modalities is better than EMG or CV alone, for both
AU6 (χ2(1) = 29.82, p < .001) and AU12 (χ2(1) = 87.55,
p < .001). The best performing combination was RF and
fusion of CV and EMG features with F1 of 0.83 for AU6;
and RF and fusion of CV and engineered EMG features F1



of 0.81 for AU12. These values were significantly above
the CV-only baseline for AU6 only (AU6: χ2(1) = 6.57,
p < .05; AU12: χ2(1) = 0.12, p = .73). Furthermore, the
feature engineering method we devised was helpful for both
AU6 (χ2(1) = 7.29, p < .01), and AU12 (χ2(1) = 31.48,
p < .001).

Using AUC as the success metric, we observed generalised
differences across classifiers as well (AU6: χ2(9) = 82.02,
p < .001; AU12: χ2(9) = 262.91, p < .001). RF is again
better than SVM at identifying AU6 (χ2(1) = 7.85, p < .01)
and AU12 (χ2(1) = 110.03, p < .001). Overall, the fusion
of two modalities is better than EMG or CV alone, for both
AU6 (χ2(1) = 31.80, p < .001) and AU12 (χ2(1) = 63.84,
p < .001). The best performing model for AU6 only was the
CV baseline, OpenFace with AUC of 0.72 followed by a RF
trained on CV and EMG features processed with our method
(0.68). However, for AU12, RF and fusion of CV and EMG
features achieved the highest AUC score (0.733), followed
closely by RF with CV and engineered EMG (0.725). We
did not find a significant difference with the CV-only baseline
(AU6: χ2(1) = 3.79, p = .05; AU12: χ2(1) = 2.21, p = .13).
Furthermore, the feature engineering method we devised was
helpful only for AU12 (AU6: χ2(1) = 0.82, p = .36, AU12:
χ2(1) = 17.86, p < .001).

The F1 scores from OpenFace are reported on their
original benchmark on a specific dataset. It is common
that benchmark results only hold for the dataset they were
obtained on. Many of the available datasets are recorded in
good conditions optimized for computer vision and different
classes are balanced. In this dataset, participants’ movement
was not constrained, and they were not instructed to behave
in a certain way beneficial for the face detection algorithm.
This was a choice to increase ecological validity, even if
it entails that the detection becomes harder. Therefore, a
drop in performance is to be expected. In the dataset we
used in this paper, there is head rotation and sometimes
occlusion by participants covering their mouth. Furthermore,
when there is data imbalance such as in the case of AU
presence assessment in a video, metrics such as accuracy
and F1 score have been reported to be biased. A classifier
could achieve high performance just by saying that there is
no AU all the time, because indeed, AUs might be rare in
between many frames of neutral expression [19].

Previous work using wearable distal EMG aimed to detect
smiles. Smiles are often a combination of AU6 and AU12.
Therefore, detecting smiles is an easier task than detecting
the more fine-grained action units. In particular, because
the Orbicularis Oculi and the Zygomaticus Major often
move in synchrony, and we are measuring their activity
distally. Figure 4 shows little difference between the selected
components for AU12 and AU6. Future work should explore
to what extent this synchrony is expected due to the shape
of the smile, or if it is a measurement limitation. Moreover,
previous studies with this device used a different experi-
mental paradigm to elicit smiles, and it did not make any
performance comparison to a computer vision baseline [30].

Overall, our method presents little improvement with

respect to the state-of-the-art in computer vision. This might
have been because when performing ICA, we decomposed
the data into three time series, from which only the two most
relevant ones were used as input for the algorithm. When our
matching was not successful, important information might
have been lost. Our feature engineering method helped the
detection only marginally. We expect that as the number of
EMG channels increases, this method would be useful for
dimensionality reduction. Future work should aim to improve
algorithm performance in such scenarios.

Furthermore, we can observe in Figure 6 that the EMG
activity starts before it can be observed by the FACS coder.
This might be one of the reasons why results of the EMG and
engineered EMG methods are sometimes in less agreement
with the ground truth FACS labels determined by visual cues.
However, it does not necessarily mean that it is less valid.
Future work should explore these differences between visible
and invisible activity in more detail.

One of the limitations of this study was the number of
electrodes provided in the EMG wearable. Four electrodes
provide a good trade-off between wearability, smile and AU
detection; but they are limited to estimating multiple muscle
sources. Increasing the electrode number will enable us to
explore more AUs. In this case, we opted to model mainly
AU6 and AU12, and to consider other AUs in the EMG as
“noise”.

Our results suggest that in situations when the participants
are seated in front of the camera, there is no difference
between CV and wearable EMG. Therefore, CV might be the
method of choice, given its unobtrusiveness. Nevertheless,
we argue that there are some situations where using wearable
distal EMG would be beneficial, and would potentially
outperform CV-based methods. These are situations where
the people to be tracked are constantly moving, lighting
conditions vary, and there is constant occlusion. An example
of this is the case of children playing outdoor games.
Further, we believe that by combining both methods during
calibration, we can aim to achieve a system that needs
little to no input from a human coder, and still achieves an
acceptable level of accuracy. Future work should compare the
performance of both modalities in high movement scenarios.

VI. CONCLUSIONS

We demonstrated the use of distal EMG to detect in-
dividual facial movements during a smile. By detecting
AUs instead of facial expressions, we can explore facial
movements before making inferences of their affective mean-
ing. Uncovering those movements with a high temporal
resolution will help shed light on the intended and perceived
affective meaning. Therefore, this technology would enable
researchers to investigate facial social signal behaviour in a
more ecologically valid manner, and to compare the results
measured with this device to the majority of psychological
research on facial expressions. So far psychological research
on this aspect has been restricted to highly controlled envi-
ronments where all the dynamism of facial expressions might
have been altered by demand characteristics.
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